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Abstract
The high order spectral element approximation of the Euler equations is stabilized via a

dynamic sub-grid scale model (Dyn-SGS). This model was originally designed for linear finite

elements to solve compressible flows at large Mach numbers. We extend its application to

high-order spectral elements to solve the Euler equations of low Mach number stratified flows.

The major justification of this work is twofold: stabilization and large eddy simulation are

achieved via one scheme only.

Because the di�usion coe�cients of the regularization stresses obtained via Dyn-SGS are

residual-based, the e�ect of the artificial di�usion is minimal in the regions where the solution

is smooth. The direct consequence is that the nominal convergence rate of the high-order

solution of smooth problems is not degraded. To our knowledge, this is the first application in

atmospheric modeling of a spectral element model stabilized by an eddy viscosity scheme that,

by construction, may fulfill stabilization requirements, can model turbulence via LES, and is

completely free of a user-tunable parameter.

From its derivation, it will be immediately clear that Dyn-SGS is independent of the nu-

merical method; it could be implemented in a discontinuous Galerkin, finite volume, or other

environments alike. Preliminary discontinuous Galerkin results are reported as well. The

straightforward extension to non-linear scalar problems is also described. A suite of 1D, 2D,

and 3D test cases is used to assess the method, with some comparison against the results

obtained with the most known Lilly-Smagorinsky SGS model.

1 Introduction

The search for the best stabilization method for high-order continuous Galerkin (CG) to solve the
Euler equations remains an active field of research [24]. This is partially due to certain properties
that the stabilization method should have but that are not always present. In particular, if achieved
via some type of artificial di�usion, (i) the e�ect of stabilization on the solution should vanish
where the solution is smooth1 and (ii) should decrease as the grid is refined. Most stabilized
(Galerkin) methods possess the latter but not the first (e.g, [21], spectral elements). To fulfill
the first requirement, solution-dependent viscosities have existed for quite some time, especially to
stabilize low order finite element [7; 29; 28; 45; 27], finite volume [1], and high-order discontinuous
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‡Uppsala University, Dept. of Information Technology, Sweden
1This property is referred to as consistency.
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Galerkin (DG) [44; 34] methods. Residual-based viscosity for spectral elements is found in the
extensive work on the entropy-viscosity method by [22; 23]. Based on the idea of the Spectral
Vanishing Viscosity of [50], the entropy-viscosity technique was designed in such a way that (iii)
the spectral accuracy of the spatial approximation is preserved if the solution is smooth. This
represents the third property that a viscosity-based stabilizing scheme should possess.

A computationally inexpensive sub-grid scale (SGS) model for compressible Large Eddy Sim-
ulation (LES) that possesses (i) and (ii) was recently designed to stabilize linear finite elements
for di�erent flow regimes [43]. At first sight, this model is a close relative of the entropy-viscosity
method, with the fundamental di�erence that no entropy equation is used to construct the dynamic
dissipation. Rather, the residuals of the Euler equations are used to build fully coupled dissipation
coe�cients. Furthermore, unlike the entropy-viscosity method and, to the best of our knowledge,
unlike any of the dissipation models listed above, this scheme converges to the unique entropy
solution (see the proof in [42]). The use of the residuals of each equation in the system makes
the artificial di�usion non-linear. The reason for exploring non-linear dissipation stems from the
analysis reported in [15], where it is concluded that linear stabilization can, at most, give a solution
that converges to a weak solution that is not the entropy solution.

In the current paper, we explore the capabilities of this dynamic model (from now on, Dyn-SGS)
for the stabilization of the spectral element solution of the Euler equations for low Mach number
stratified flows. Furthermore, we extend the method for the solution of quasi-linear scalar equations
for use in transport schemes as required in atmospheric modeling.

The derivation of Dyn-SGS is tied to the fundamental idea of LES; the flow equations (Euler,
in this particular case) are filtered to separate the large (grid resolved) from the small (sub-grid,
unresolved) scales [35]. The filtering operation yields a new set of equations containing additional
terms that account for the e�ect of the unresolved scales onto the resolved solution.

The original version of the current method [43] relies on the regularization of the continuity
equation, other than momentum and energy. The idea of mass stabilization is not new; we find it in,
e.g., [44; 34; 49; 5; 23; 41; 24]. Despite the remarkable results that are shown in the aforementioned
literature, this type of regularization is often the subject of criticism by physicists who, for the most
part, doubt the physical meaning of mass dissipation on the one hand and the conservation of mass
on the other. To not a�ect conservation, in the current work we build Dyn-SGS so that dissipation
is not applied to the continuity equation. Its formal derivation is described in the text. Note that
mass may still be conserved when the continuity equation is stabilized, as long as certain boundary
conditions are applied.

In Dyn-SGS the di�usion coe�cients of the (turbulent) stresses are a function of the equation
residuals. In contrast to most artificial di�usion methods that apply the same operator and coe�-
cient to every equation, Dyn-SGS applies separate di�usion coe�cients to each equation. Because
Dyn-SGS is residual-based, the e�ect of the artificial di�usion is minimal in the regions where the
solution is smooth. The third property (iii) mentioned above is a direct consequence of this.

In spite of, e.g., its higher parallel cost than its second order counterpart and the possible need of
a tunable parameter, linear and monolithic2 hyper-viscosity remains the classical approach used by
atmospheric modelers [31]. A recent review of dissipation-based stabilization schemes for Galerkin
methods can be found in [40]. This work represents, to our knowledge, the first application of a
non-linear and grid dependent artificial di�usion to stabilize high-order spectral elements in the
solution of the Euler equations for stratified flows and that possesses the three properties (i), (ii),

2
Monolithic [24] means that the 2–-order operator (≠1)–+1Ò– · (µÒ–) with di�usion coe�cient µ is applied

equally to all quantities.
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Table 1: List of constants used in this paper

Symbol Description Value
cp specific heat of dry air at constant pressure 1004.5 Jkg≠1 K≠1

cv specific heat of dry air at constant volume 717.5 Jkg≠1 K≠1

“ cp/cv 1.4
R gas constant of dry air 287.17 Jkg≠1 K≠1

g magnitude of acceleration of gravity 9.80616 ms≠1

p0 reference pressure 105 Pa
Ê angular velocity of the Earth 7.292 ◊ 10≠5 s≠1

and (iii). Moreover, Dyn-SGS is fully parameter free. The extension to linear and non-linear scalar
problems is straightforward and is described as well.

The current method is successfully tested on a series of 1D, 2D and 3D benchmark problems
for stratified and gravity driven atmospheres and scalar transport problems.

This study is a first e�ort towards the construction of an LES model within the Nonhydrostatic
Unified Model of the Atmosphere (NUMA) developed by the authors during the past few years
[33; 19].

The rest of the paper is organized as follows. The sets of equations and the SGS model are
described in Section 2. The numerical discretization method of these equations is reported in Section
3. The results for the Euler and scalar equations are reported in Sections 4 and, respectively, 5.
The conclusions are given in Section 6.

2 Governing equations

Let � œ R3 be a fixed 3-dimensional domain with boundary � and Cartesian coordinates x =
[x

1

(x),x
2

(y),x
3

(z)]. Let us identify the dry air density, the velocity vector, and the potential
temperature with the symbols fl,u = u

i

(i = 1,2,3) and ◊. Then, the time-dependent Euler equations
in advective form can be written as:

ˆfl

ˆt
+ ˆflu

j

ˆx
j

= 0, (1a)

ˆu
i

ˆt
+u

j

ˆu
i

ˆx
j

+ 1
fl

ˆp

ˆx
i

= ≠g”
i

, (1b)

ˆ◊

ˆt
+u

j

ˆ◊

ˆx
j

= 0, (1c)

where g is the acceleration due to gravity that acts in the direction of ”
1,2,3

= [0 0 ≠1]. Equations
(1) must be solved in � ’ t œ R+ given proper initial and boundary conditions. Pressure, p, is
related to ◊, and fl through the equation of state for a perfect gas

p = p
0

3
flR◊

p
0

4
“

.

The values of the reference pressure, p
0

, and of the other constants used in the paper are reported
in Table 1.
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Remark 1 Because in Numerical Weather Prediction (NWP) the small variations of the ther-
modynamic quantities (fl,◊,p) with respect to a constant and hydrostatically balanced reference
background state (fl

ref

,◊
ref

,p
ref

) are the quantities of major interest [38], the splitting �fl(t,x) =
fl(t,x)≠fl

ref

(z), �◊(t,x) = ◊(t,x)≠◊
ref

(z), and �p(t,x) = p(t,x)≠p
ref

(z) must be introduced to
solve Eqs. (1). Nevertheless, to keep the notation clear, the symbol � will only be used in the
analysis of the results rather than in the definition and analysis of the LES equations described
from now on.

2.1 LES and the Dyn-SGS model

The LES formulation is obtained by first introducing the spatial filtering operation

f(x) =
⁄

�

G
�

(x ≠‰)f(‰)d‰, (2)

where the resolved quantity, f , is obtained from the filtering function G of the instantaneous
quantities, f , using a filter width �. The application of (2) to the continuity equation (1a) results
in the presence of an additional sub-grid term on the right-hand side. To avoid it, the change of
variable Âf = flf/fl [16] is also introduced3. The details of the filtering operations for the compressible
equations can be found in, e.g. [18] and citations therein. The two operations yield the filtered
equations

ˆfl

ˆt
+ ˆflÂu

j

ˆx
j

= 0, (3a)

ˆÂu
i

ˆt
+ Âu

j

ˆÂu
i

ˆx
j

+ 1
fl

ˆp

ˆx
i

= ≠1
fl

ˆ·SGS

ij

ˆx
j

≠g”
i

, (3b)

ˆÂ◊
ˆt

+ Âu
j

ˆÂ◊
ˆx

j

= ≠1
fl

ˆQSGS

j

ˆx
j

, (3c)

where the derivatives of ·SGS

ij

and QSGS

j

on the right-hand side of (3b) and (3c) represent the
contribution of the unresolved sub-grid scales (SGS). In (3b), ·SGS

ij

is the turbulent stress tensor,

·SGS

ij

= fl( Áu
i

u
j

≠ Âu
i

Êu
j

) ,

which is modeled as a function of the tensor

S
ij

= 1
2

3
ˆÂu

i

ˆx
j

+ ˆÂu
j

ˆx
i

4
,

as
·SGS

ij

= 2µS
ij

. (4)
How the coe�cient µ is constructed defines the SGS method at hand. It will be defined shortly.
Similarly, the quantity QSGS

j

in (3c) results from filtering Eq. (1c); it is given by

QSGS

j

= fl
1

Á◊u
j

≠ Â◊Êu
j

2
(5)

3From now on, the symbols ·̄ andÂ· will indicate the grid-resolved quantities (large-eddy).
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Table 2: Element characteristic length for anisotropic grids

Formula Notes Reference
� = (�x�y�z)1/3

/p [13]
� = f (�x�y�z)1/3

/p [46]
where f = cosh

# 4
27

!
ln2

a1 + ln2
a2 ≠ lna1 lna2

"$1/2,
where a1,2 = �small1,2/max(�x,�y,�z)/(N + 1) �small1,2 are the two smallest sizes.

N is the order of approximation. See Section 3.

and is modeled as
QSGS

j

= Ÿ
ˆÂ◊
ˆx

j

, (6)

where the coe�cient Ÿ will be defined below. To proceed with the construction of µ and Ÿ, we
introduce the residuals of the filtered equations from which the dissipative operators are excluded.
We write:

R(fl) = ˆfl

ˆt
+ ˆflÂu

j

ˆx
j

, (7a)

R(Âu
i

) = ˆÂu
i

ˆt
+ Âu

j

ˆÂu
i

ˆx
j

+ 1
fl

ˆp

ˆx
i

+g”
i

, (7b)

R(Â◊) = ˆÂ◊
ˆt

+ Âu
j

ˆÂ◊
ˆx

j

. (7c)

The time derivative in (7) can be approximated via a finite di�erence approximation. As previously
done in, e.g., [23] we use a 2nd-order backward di�erentiation formula. Other methods can be used.
The coe�cients µ and Ÿ are calculated element-wise on every high order element �

e

given a spectral
element approximation of Equations (3) – the spectral element method will be described in Section
3 – In the current model, the filter width is taken as the characteristic size of an element. Simply,
given an element �

e

of order N and edge lengths �x,�y,�z of comparable orders of magnitude,
we define the following characteristic length, and hence filter width:

� = min(�x,�y,�z)/(N +1).

This definition is su�cient given the scope of the current study; nevertheless, a more proper defi-
nition of � for LES should be used in future work.

Remark 2: selection of the element characteristic length The choice of the characteristic
element size is tied to the aspect ratio of the element at hand. For grids made of relatively reg-
ular hexahedra, being �x, �y and �z of the same order of magnitude, the choice is trivial. On
the contrary, highly anisotropic grids (usually the case for global circulation models of the Earth
atmosphere, or boundary layer grids), stabilization may be greatly a�ected by an improper choice
of �. Based on our experience, for �z/(�x,�y) π 1 and �x/�y ¥ 1, we recommend to split the
dynamic di�usion operator into a horizontal and a vertical component. In this way, simulations
on anisotropic grids will rely on anisotropic di�usion. Should a splitting operation not be possible,
then we recommend the options in Table 2.
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For the sensible temperature T = ◊(p/p
0

)R/cp and one element of characteristic length �, we
start by defining the following quantities:

µ
max

|
�e = 0.5� =

....|Âu|+
Ú

“
p

fl

....
Œ,�e

, (8)

where |Âu|+
“p/fl is the maximum wave speed and

µ
res

|
�e = �2 max

A
ÎR(fl)ÎŒ,�e

Îfl≠ ‚flÎŒ,�

,
ÎR(Âu)ÎŒ,�e

ÎÂu ≠ ‚uÎŒ,�

,
ÎR(Â◊)ÎŒ,�e

ÎÂ◊ ≠ ‚◊ÎŒ,�

B
, (9)

where ‚· indicates the space average of the quantity at hand over � and the norms Î · ÎŒ,�

at the
denominator are used for normalization to preserve the correct dimension of the resulting equation.
Having µ

max

and µ
res

constructed, we can compute the dynamic coe�cients of the viscosity terms
as:

µ|
�e = min(µ

max

|
�e ,µ

res

|
�e) (10a)

Ÿ|
�e = Pr

“ ≠1µ|
�e (10b)

where Pr is an artificial Prandtl number whose value will be defined in Section 4.
The size of the residuals is proportional to

!
�

�e

"≠1 at discontinuities and is relatively small near
smooth regions. Moreover, the size of the viscosity terms never exceeds µ

max

, which is equivalent
to a stable upwind scheme in regions with sharp discontinuities. We briefly illustrate this last point
by taking a finite di�erence approximation of the 1D advection-di�usion equation with positive
velocity u and a di�usion coe�cient proportional to µ

max

. Given n time steps and a grid of j
points, we write the following:

ˆq

ˆt
+u

ˆq

ˆx
≠ 1

2�u
ˆ2q

ˆx2

¥

qn+1

j

≠ qn

j

�t
+u

qn

j+1

≠ qn

j≠1

2�
≠ 1

2u�
qn

j+1

≠2qn

j

+ qn

j≠1

�2

=

qn+1

j

≠ qn

j

�t
+ 1

2u
qn

j+1

≠ qn

j≠1

≠ qn

j+1

+2qn

j

≠ qn

j≠1

�
=

qn+1

j

≠ qn

j

�t
+u

qn

j

≠ qn

j≠1

�
,

where the last expression is an upwinded di�erence approximation.

Remark 3: a parallel with Lilly-Smagorinsky Going back to Eq. (4) and the definition of
µ, the eddy viscosity model due to Lilly and Smagorinsky [37; 47] (valid for low Mach number flows
only) reads as follows:

µ = 2C
S

�2|S|Ô1≠Ri, (12)
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where C
S

is a constant to be determined (see [37; 36]), |S| =


2S
ij

S
ij

, and Ri is the Richardson
number defined as

Ri ¥ g

◊

ˆ◊

ˆz
/|S|.

Given µ, Ÿ is obtained analogously.

Dyn-SGS and Smagorinsky clearly come from the same root. This means that Dyn-SGS can be
implemented with ease within any code that already contains an implementation of Smagorinsky.
By theoretical means and physical assumptions, the Smagorinsky constant assumes values C

S

=
0.2≠0.22; these are twice as large as the values needed for LES calculations of practical importance
[9]. The more typical value C

S

= 0.14 is used in the Smagorinsky runs reported in Section 4. No
user-defined parameter has to be defined for Dyn-SGS.

2.2 Extension to quasi-linear scalar equations

The extension to scalar problems is straightforward. We illustrate it for the three-dimensional
advection equation of a scalar q:

ˆq

ˆt
+u

j

ˆq

ˆx
j

= 0 j = 1,2,3, (13)

where u
j

are the components of a prescribed velocity field. When q = u
1

, and j = 1, the 1D quasi-
linear, inviscid Burgers equation4 [4; 8] is recovered. If we filter (13) as done for the Euler equations,
we find the new problem

ˆÂq
ˆt

+u
j

ˆÂq
ˆx

j

= ≠ˆQSGS

j

ˆx
j

. (14)

As in Eq. (6), QSGS

j

is modeled as

QSGS

j

= µ
ˆÂq
ˆx

j

,

where µ is the residual-dependent function

µ|
�e = 0.5�2

ÎR(Âq)ÎŒ,�e

ÎÂq ≠ ‚qÎŒ,�

. (15)

3 Variational formulation and spectral element approxima-

tion

Equations (3) are solved via the spectral element method in the domain � with boundary �. To
proceed, we define the following notation: given the Sobolev space H1(�) of weakly-di�erentiable
functions, the space V ™ H1 of test and trial functions of the Galerkin formulation is introduced.
Given the space L2 of real-valued functions that are square integrable in �, the 2-norm associated
with it is denoted by Î ·Î

2

. Given a finite element partition �h = fine
e=1

�
e

of the domain � into n
e

conforming hexahedra �
e

of characteristic length �, Vh is the finite dimensional projection of V.
4Although it is classically referred to as the "Burgers" equation, the first time that it was introduced dates back

to the 1915 work by Bateman [4].
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To proceed, let us recast Eqs. (3) in compact form as

ˆq

ˆt
+L(q) = ≠g (16)

where q = [fl, Âu
i

, Â◊]T is the array of the solution variables (i = 1,2,3) and L(q) contains all the
di�erential operators that are easily identifiable in the system above. From now on, the symbols
· and Â· that identify the large scale quantities will be omitted to relax the notation. Within each
element, the finite dimensional approximation of q(x, t) is given by the expansion

q

h(x, t)|
�e =

(N+1)

3
ÿ

k=1

Â
k

(x)q
k

(t)|
�e (17)

where (N + 1)3 is the number of collocation points within the element of order N and Â
k

are the
interpolation polynomials evaluated at point k. The basis functions Â

k

are constructed as the tensor
product of the one-dimensional functions h

–

(›(x)), h
—

(÷(x)), and h
“

(’(x)) as:

Â
k

= h
–

(›(x))¢h
—

(÷(x))¢h
“

(’(x)), ’–,—,“ = 0, ...,N.

The functions h
–

(›(x)), h
—

(÷(x)), h
“

(’(x)) are the basis functions associated with the N + 1
Legendre-Gauss-Lobatto (LGL) points ›

–

, ÷
—

, ’
“

, respectively, which are given by the roots of

(1≠›2)P
Õ
N

(›) = 0,

where P Õ
N

(›) are the derivatives of the N th-order Legendre polynomial [14; 32]. Given these defi-
nitions, the one-dimensional Lagrange polynomials h

–,—,“

(›) are

h
–,—,“

(›) = ≠ 1
N(N +1)

(1≠›2)P Õ
N

(›)
(› ≠›

–,—,“

)P
N

(›
–,—,“

) .

The same expansion (17) is used to construct the derivatives. By di�erentiation of Eq. (17)
with respect to time and space, we write:

ˆq

h(x, t)
ˆt

|
�e =

(N+1)

3
ÿ

k=1

Â
k

(x)dq

k

(t)
dt

,

ˆq

h(x, t)
ˆx

|
�e =

(N+1)

3
ÿ

k=1

ˆÂ
k

(x)
ˆx

q

k

(t). (18)

The definitions and expansions introduced above yield the weak, element problem
⁄

�

h
e

Âh

5
ˆq

h

ˆt
+L(qh)

6
d�h

e

=
⁄

�

h
e

Âh

gd�h

e

. (19)

By virtue of the global assembly procedure, the global problem is solved on �h and consists in
finding q

h(t,x) œ Vh such that
⁄

�

h
Âh

5
ˆq

h

ˆt
+L(qh)

6
d�h =

⁄

�

h
Âh

gd�h ’Âh œ Vh. (20)
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Notice that we have not explicitly treated the second order operators so far. Let us start with the
momentum equation and treat the strain

1
fl

ˆ·SGS

ij

ˆx
j

= µ

fl

ˆ

ˆx
j

3
ˆu

i

ˆx
j

+ ˆu
j

ˆx
i

4
,

where the dissipative coe�cient µ is taken as a local constant (at the current time step) that can
hence be taken out of the derivation. Multiplication by the test function Âh and integration yields

⁄

�e

Âh

µ

fl

ˆ

ˆx
j

3
ˆu

i

ˆx
j

+ ˆu
j

ˆx
i

4
d�

e

, (21a)

that becomes, after integration by parts,
⁄

�e

Âh

µ

fl
n

j,�e

3
ˆu

i

ˆx
j

+ ˆu
j

ˆx
i

4
d�

e

≠
⁄

�e

µ
ˆ

!
Âh/fl

"

ˆx
j

3
ˆu

i

ˆx
j

+ ˆu
j

ˆx
i

4
d�

e

, (21b)

where n
j,�e is the j component of the unit normal vector on the element boundary and

ˆ
!
Âh/fl

"

ˆx
j

= 1
fl

ˆÂh

ˆx
j

+Âh

ˆ (1/fl)
ˆx

j

. (22)

Because the stresses in the current method represent an artificial di�usion that is only an approx-
imation to the actual Navier-Stokes stresses, to limit the operation count in our implementation
we omit the second term on the right hand of side of (22). Furthermore, because of the continuity
of the solution across the element boundaries and because of the inviscid or periodic boundary
conditions that we will apply in the tests below, the flux term that arises from the integration by
parts vanishes.

The final semi-discrete matrix system results from the global integral equation (20) using the
expansions (18) and the global assembly of the element matrices that result from it. The system
written in compact matrix-vector form is

dq

k

dt
= M

≠1L
k

(q
k

), (23)

where M is the global mass matrix that is diagonal by construction since the integration and
interpolation points within the elements are co-located. For more details on the construction of
this system and of the global assembly operation see, e.g., [33].

System (23) is discretized in time by the implicit-explicit (IMEX) time integration described
in [19]. Leaving the details of IMEX to [19], the IMEX time approximation uses an implicit
approximation of the (linear) terms responsible for the fast moving acoustic and gravity waves,
whereas the slow non-linear advection is treated explicitly. In this paper, IMEX is based on a
fourth order multi-stage additive Runge-Kutta (ARK4) method. This approach allows us to relax
the constraint that fast waves put on the Courant-Friedrichs-Lewy [12] condition and on the size
of the time-step.

4 Model verification: Euler equations

In the following section, Dyn-SGS is tested against a suite of standard benchmarks of ubiquitous
use when testing new atmospheric dynamical cores.
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First, we perturb a neutrally stable atmosphere with thermal anomalies that vary in definition
and size. The tests are divided into 21

2

D, where the domain extends to infinity along the y-direction,
and fully 3D problems in a simply connected domain. They include the following: (i) 21

2

D rising
thermal bubble in a large domain (see the original 2D test in [2]) and (ii) the classical density
current [48]. In 3D we have: (iii) a rising thermal bubble in a small domain [33], (iv) the baroclinic
wave in a channel [51]. Except for the balanced initial state of the baroclinic wave in a channel,
an analytic solution does not exist for these problems. For this reason, it must be understood that
most of these tests can only give a qualitative (and relative) information on the accuracy that one
model can achieve.

4.1 2

1

2

D rising thermal bubble in a large domain

This test consists of a flow that is triggered by the thermal perturbation of a neutrally stratified
atmosphere at initially uniform potential temperature ◊

0

= 300 K and in hydrostatic equilibrium
such that the pressure decreases with z as:

p = p
0

3
1≠ g

c
p

◊
0

z

4
cp/R

. (24)

The domain � = [≠5000,5000]◊ [≠Œ,Œ]◊ [0,10000]m3 and the definition of the perturbation are
given as in [2]. The perturbation is linear and defined as

�◊ = ◊
c

5
1.0≠ r

r
0

6
if r Æ r

0

= 2000m, (25)

where r =


(x≠x
c

)2 +(z ≠z
c

)2, (x
c

,z
c

) = (0,2000)m, and ◊
c

= 2 K. Due to the symmetry of the
problem, we simulate only half of the domain (to verify that the current method can indeed preserve
symmetry, in Section 4.3 we analyze a fully 3D simulation without any geometric assumptions).
The initial velocity field is zero everywhere. Periodic boundary conditions are used along y whereas
no-flux is imposed in x and z. We perform four runs on four di�erent grids with e�ective resolutions
1) �x = �z = 125m (as in [2]), 2) �x = �z = 62.5m, 3) �x = �z = 31.25m, and 4) �x = �z =
15.625m. The di�erent resolutions were used to analyze the behavior of the method as the grid
is refined, although no proper convergence study is made. The contour lines of the perturbation
potential temperature �◊ are plotted at t = 1020 s in Fig. 1. The maximum of �◊ at the final
time is ¥ 1.4 K, which agrees with the f -wave solution of [2] at the same resolution of 125 m, and
is equivalent with the WRF simulation reported in the same paper. The extrema of �◊ in this
study increase a few fractions of a degree as the grid is refined to 15.625 m. This is to be attributed
to the grid dependence of the current SGS model, whose dissipation properties vary quadratically
with respect to the size of the grid. We will touch more on this issue in the analysis of the density
current below. To maintain the WRF solution stable, Ahmad and Lindeman had to add a constant
15m2 s≠1 di�usion. They did not for their finite volume-based f -wave decomposition. Without
a constant di�usion, we preserve stability for all the tested resolutions. The shear between the
boundary of the perturbation and the background at rest triggers very well defined Rayleigh-Taylor
instabilities that become ever more visible when the resolution is increased. To give some hints to
the reader on what the sub grid scales look like and what spatial distribution they have with respect
to the developing bubble, we show them in Fig. 2. In the figure, the symbol SGS(·) indicates the
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stresses that appear in the momentum and ◊ equations. They are (with some abuse of notation)

SGS(u
i

) =
ˆ·SGS

ij

ˆx
j

/ÎSGS(Âu
i

)ÎŒ,�

, and SGS(◊) = ˆQ
j

ˆx
j

/ÎSGS(Â◊)ÎŒ,�

.

In [43] the Prandtl number is assigned the artificial value 0.1. Because this value is fully artificial
and does not have a physical foundation, for this study we decided to test how the current stresses
behave if we picked the air Prandtl number, approximately equal to 0.7. We also tried 0.1 and an
intermediate value of 0.35. With Pr=0.1 the solution still preserves stability for all the flow regimes
that we tested, confirming that the method was implemented properly since 0.1 was successfully
used in [43]. However, in our opinion the solution lost some of its physics since hardly no dissipation
of �◊ could be observed as time evolved. In other words, the maximum of �◊ was preserved along
the full simulation, which is an unphysical behavior for the flows we are interested in simulating.
If we looked at this from a mathematical point of view, this is arguably a great result since the
method achieved stability without really a�ecting the originally inviscid system; however, from a
more physical point of view, we want a method that not only stabilizes, but also introduces the
necessary sub-grid stresses that model the physical dissipation of a moving atmosphere in a sheared
environment. In Fig. 3 we compare the solution of the same rising thermal bubble already shown
in Fig. 1 for Pr=0.35, but now also using Pr=0.7 (top row of Fig. 3). As expected, Pr=0.7 gave
a smoother solution, possibly indicating a greater dissipation. However, excluding the extremely
small oscillation that are visible in certain regions in the case of Pr=0.35, we observe how the
distributions of �◊ for the two cases are practically identical. The extrema of �◊ are preserved;
this is seen by looking at the di�erences: [�◊

max,P r=0.35

≠�◊
max,P r=0.7

](15.625m) = 0.028 K and
[�◊

max,P r=0.35

≠ �◊
max,P r=0.7

](31.25m) = 0.1 K; they possibly show that the more physical Pr
and the dynamically adapting di�usion coe�cients have an e�ect on the smaller scales (i.e. small
oscillation in the domain) rather than on the global solution and indeed help smoothen the solution
only where oscillations are important.

4.2 2

1

2

D Density current

The density current was introduced in [10] and became a standard benchmark in the development
of atmospheric codes [48]. Like in [2], in this paper the benchmark is run without the constant and
uniform artificial di�usion with coe�cient µ = 75m2 s≠1 of [48]. This is because we are interested
in assessing Dyn-SGS as a stabilizing tool that does not require additional constant viscosity. For
this reason, no converged solution should be expected. On the contrary, as the grid is refined, more
structures will be resolved. We will show this shortly. The background initial state is at a uniform
potential temperature ◊

0

= 300 K within the domain � = [≠25600,25600]◊ [≠Œ,Œ]◊ [0,6400]m3.
A perturbation of ◊ centered in (x

c

,z
c

) = (0,3000)m and with radii (r
x

, r
z

) = (4000,2000)m is given
by the function

�◊ = ◊
c

2 [1+cos(fi
c

r)] if r Æ 1 (26)

where ◊
c

= ≠15 K and r =


(x≠x
c

)/r2

x

+(z ≠z
c

)/r2

z

. Periodic boundary conditions are used along
y whereas no-flux and free-slip conditions are set in x and z. The initial velocity is zero. The
time evolution of the density current for 5400 s is shown in Fig. 4. Because �◊ is transported
(and di�used) by the flow, it is the perfect variable to be used in the visualization of mixing. The
evolution and transition onto a fully mixed flow is evident. The mixing is triggered by the shear
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Figure 1: 21

2

D rising thermal bubble in a large domain. Four resolutions as indicated in each
subfigure. The perturbation of potential temperature �◊ is plotted at t = 1020 s. All the results
are shown for a maximum Courant number 8.
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Figure 2: 21

2

D rising thermal bubble in a large domain. From left to right: contours of the dynamic
stabilization stresses SGS(u), SGS(w), and SGS(◊). The values of the SGS terms are normalized
with respect to the global maximum of the stress at hand (i.e. SGS(◊) is the stress of the Â◊ equation
and is normalized with respect to its maximum value at the given time step). These plots show
the structure of these stresses and how they dynamically adapt to the solution. These stresses are
obtained from the fine grid simulation using the resolution �x = �z = 15.625 m.

that becomes greater as the velocity of the moving cold mass of air first accelerates and later hits
the right wall. It bounces o� the boundary and keeps moving left- and rightwards as more mixing
occurs at the expense of kinetic energy. Due to mixing and dissipation, the minimum of �◊ increases
from -15 K at t = 0 s to -3.729 K during 5400 seconds (from dark blue to light green shading in the
plots), whereas the maximum is preserved to 0 K (dark red).

Figure 5 shows �◊ for the e�ective resolutions �x = �z = 50 m, �x = �z = 25 m, and �x =
�z = 12.5 m at simulation times 600, 750, and 900 s. To our knowledge, no data is available to
compare against at the 12.5 m resolution. It is evident that the amount of vortical structures is
larger at higher resolution. Certainly, the finer resolution is expected to yield a more resolved
solution. However, we believe this to be a mixed e�ect of the resolution and smaller dissipation
required. Just like the classical Smagorinsky and other models, the current SGS model is a quadratic
function of the grid size so that dissipation decreases as the grid is refined. The e�ect on the solution
is non-linear. The non-linearity can be explained as follows: the finer grid lowers the influence of
dissipation with a direct e�ect on the oscillations of the solution variable. Slightly larger, yet
controlled, localized oscillations imply larger gradients (and hence residuals) that directly a�ect the
dissipation in the regions of larger residuals.

Given the accepted use of the Smagorinsky model [37; 47] in numerical weather prediction, to
support our hypothesis that a properly designed SGS model can serve as a stabilization method,
we compare the results of the current model with the constant coe�cient Smagorinsky at 25 m and
50 m resolutions. The results are plotted in Figs. 6-7. The two methods are in strong agreement
at both resolutions. It must be kept in mind that the density current described here is not a
boundary layer flow; the boundaries are treated as if the problem were inviscid although the flow
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Figure 3: As Fig. 1, but here we concentrate on the e�ect of the value of the Prandtl number. Top
row: Pr=0.7. Bottom row: Pr=0.37. Left column: �x = �z = 31.25 m. Right column: �x = �z =
15.625 m. As expected the Pr=0.7 solution is smoother, possibly indicating a greater dissipation.
However the di�erences [�◊

max,P r=0.35

≠�◊
max,P r=0.7

](15.625m) = 0.028 K and [�◊
max,P r=0.35

≠
�◊

max,P r=0.7

](31.25m) = 0.1 K show that the greater Pr has an e�ect on the smaller scales only
rather than on the global solution.
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Figure 6: 21

2

D density current. Comparison of the current method (top) with the solution obtained
using Smagorinsky with constant C

s

= 0.14 (bottom) using a grid resolution �x = �z = 50 m.

is viscous; free-slip boundary conditions are applied on every solid wall. This is an important point
since it is well known that Smagorinsky is overly dissipative in boundary layer flows unless it is
properly corrected. We are currently working on a thorough comparison of three LES models that
are commonly used in atmospheric simulations and the results will be reported in a subsequent
paper.

This test case does not admit an analytic solution. To compare with other models we look
at the front position at t = 900s, where the front is defined as the position on the ground where
�◊ = ≠1 K. In Table 3, the position of the front is reported for Dyn-SGS, for our implementation
of Smagorinsky, and for some of the results reported in the literature. As the grid is coarsened, the
front is slightly slower; this fact is also observed in Fig. 5 of [48]. On the 50 m grid, all models
agree with a front location in the range [14409,14975] m. For the data that are available at di�erent
resolutions (see current, Smagorinsky, and VMS in the table), a trend is observed: as the resolution
is increased from 200 m to 12.5 m, the front moves relatively faster although within a few meters
of di�erence in the front position from the fine to the coarse grid solution. The somewhat smaller
speed in the case of a coarser grid is to be attributed to the relatively larger dissipation in the coarse
solution; this makes the flow more viscous and hence gives it a tendency to be slightly slower.

As the resolution is increased, the amount of structures that are resolved increases as well.
Without the large viscosity that homogenizes the solution as done in [48] with the sole target of
reaching convergence, the inviscid, non-linear, and non-steady solution that we present here is not
expected to show signs of space-convergence. The same behavior was observed in [41], where VMS
was used to stabilize a finite element discretization of the Euler equations. Rather, we expect more
and more structures to be resolved until a grid resolution of the order of the smallest eddies is
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Figure 7: As in Fig. 6, but at the finer resolution �x = �z = 25 m.

reached.

4.3 3D warm bubble

So far only 21

2

D problems have been presented, where the solution was sought in a 3D domain with
infinite extension along the y-direction. To test the complete applicability of the current method
to fully three-dimensional problems, we consider the 3D analog of the 21

2

D buoyant rising thermal
described above. The problem is now solved in the domain � = [0,1000]3 m3 as in [33]. The initial
perturbation �◊ is no longer linear; it is given by the function

�◊ = ◊
c

2

5
1.0+cos

3
fir

r
0

46
if r Æ r

0

= 250 m, (27)

where r =


(x≠x
c

)2 +(y ≠y
c

)2 +(z ≠z
c

)2, (x
c

,y
c

,z
c

) = (500,500,260)m, and ◊
c

= 0.5 K. To verify
the preservation of the axial symmetry of the problem, we solve the fully 3D problem without relying
on its axial symmetry. In Figs. 8 and 9, the 4th and, respectively, 8th-order solutions are shown
at t = 400 s. With n

e

= 10 ◊ 10 ◊ 10, the e�ective resolutions are 25 and 12.5 m. Based on [33],
a constant and uniform artificial di�usion (indicated by the symbol HV

2

) is expected to lead to
a solution that varies according to the value of its coe�cient. The current method is designed to
dissipate the solution only where necessary. The value of the extrema of the current solution is
in close agreement with the HV

2

solution using 0.5m2 s≠1 (max(�◊) ¥ 0.35), indicating that the
amount of di�usion that is being added for stabilization is su�ciently small to not dissipate the
solution away from the region of larger residuals, but is large enough to suppress all the oscillations

18



Table 3: Density current. Comparative results of front location at t = 900 s. The results are
reported for the following models: current model, Smagorinsky implemented in our code, VMS,
WRF-ARW, f -wave, filtered Spectral Elements (SE), filtered Discontinuous Galerkin (DG), REFC,
REFQ, and PPM. All models but the current, Lilly-Smagorinsky, and VMS, used artificial di�usion
with constant µ = 75m2 s≠1.

Model Space discr. Resolution ne Order µ = 75m2 s≠1 Front Location [m]
Current (Dyn-SGS) SEM 12.5 m 512 ◊ 1 ◊ 128 4th No 15056
" " 25 m 256 ◊ 1 ◊ 64 4th No 14992
" " 50 m 128 ◊ 1 ◊ 32 4th No 14535
" " 100 m 64 ◊ 1 ◊ 16 4th No 14325
" " 200 m 32 ◊ 1 ◊ 8 4th No 13552
" " 133 m 32 ◊ 1 ◊ 8 6th No 14568
" " 100 m 32 ◊ 1 ◊ 8 8th No 14754
Smagorinsky SEM 25 m 256 ◊ 1 ◊ 64 4th No 14918
" " 50 m 128 ◊ 1 ◊ 32 4th No 14726
" " 100 m 64 ◊ 1 ◊ 16 4th No 14551
VMS [41] FEM 25 m No 14890
" [41] " 50 m No 14629
" [41] " 75 m No 14487
" [41] " 100 m No 14355
SE [20] SEM 50 m Yes 14767
DG [20] DG 50 m Yes 14767
f -wave [2] FV 50 m Yes 14975
WRF-ARW [2, run in-] FD 50 m Yes 14470
REFC [48] FD 50 m Yes 14437
REFQ [48] FD 50 m Yes 14409
PPM [48] FD 50 m Yes 15027

that are visible in the case of HV
2

. As previously observed for the density current, the higher the
resolution the faster the front. Although the di�erence in height is minimal, it is still noticeable
within a few meters di�erence. This same test was run in [33] using an e�ective resolution of 12.5 m
(8th-order) and in [19] with an e�ective resolution of 10 m. In the latter, the front is approximately
50 m higher than it is in the case of [19]. This said, the current method produces a thermal whose
dissipation is as limited and constrained in space as it is for HV

2

(0.5m2 s≠1) but, at the same
time, preserves the smoothness of HV

2

(5.0m2 s≠1). The 4th and 8th-order solutions show the same
behavior. It is also shown that its stability properties are not compromised or modified as the order
of the spectral element is increased from 4 to 8. It is important to keep this in mind since the
increase of the element order coincides with an important decrease in the grid spacing within each
element, and the current version of the stabilizing method is a function of the element e�ective
resolution.

4.4 Baroclinic-wave in a 3D channel with geostrophically balanced back-

ground

A geostrophically balanced background is defined as in [51]. The f≠plane approximation is consid-
ered. The flow is confined in a very-high aspect ratio domain � = [L

x

◊L
y

◊L
z

] = [40000◊6000◊30] km3

with periodic boundary conditions along the flow direction and free-slip, non-penetrating bound-
aries everywhere else. Notice how the characteristic size of this domain (and of the grid spacing)
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Figure 8: 3D rising thermal bubble. Solution at t = 400 s. Left column: xz-slice of �◊ at y = 500
m. Right column: yz-slice at x = 500 m. Top row: solution using the current method (Dyn-SGS).
Middle row: solution using second-order hyper di�usion (HV

2

) with constant coe�cient µ = 0.5.
Bottom row: second-order hyper di�usion with constant coe�cient µ = 5.0. Courant number 20.0
on a 25 m e�ective resolution grid of order 4. � = [1000]3 m3.
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Figure 9: As Fig. 8, but for 8th-order elements and e�ective resolution of 12.5 m, and Courant
number 17.5.



is up to O(104) times larger than that of the previous problems. If we consider a pressure-based
vertical coordinate ÷, from which the z coordinate is derived via iteration (see appendix in [30]),
the initial jet is a zonally symmetric flow defined as

u(x,y,÷) = ≠u
0

sin2

3
fiy

L
y

4
ln÷ exp

C
≠

3
ln÷

b

4
2

D
, (28)

with amplitude u
0

= 35ms≠1 and vertical width parameter b = 2. The meridional and vertical
velocities, (v,w), are initially zero. In the f≠plane approximation the Coriolis parameter is f

0

=
2Ê sinÏ

0

at the latitude Ï
0

= 45oN, where Ê is the Earth rotational velocity (Table 1). Although
in a plane channel, this jet is designed to resemble a mid-latitude westerly zonal wind with a zonal-
and time-mean jet speed at the earth troposphere. The background geopotential is given by

�(x,y,÷) = T
0

g

�

1
1≠÷Rd�/g

2
+��(x,y) ln÷ exp

C
≠

3
ln÷

b

4
2

D
, (29)

where T
0

= 288 K is a reference temperature, � = 0.005Km≠1 is the lapse rate, and �� is the
perturbation of � given by

�� = u
0

2 f
0

5
y ≠ L

y

2 ≠ L
y

2fi
sin

3
2fiy

L
y

46
. (30)

The perturbed temperature distribution is given by

T (x,y,÷) = T
0

÷Rd�/g + ��(x,y)
R

3
2
b2

ln2 ÷ ≠1
4

exp
C

≠
3

ln÷

b

4
2

D
. (31)

Baroclinic instabilities are responsible for mid-latitude cyclones [26] and are thus important atmo-
spheric processes for an atmospheric model to capture. The baroclinic wave instability is triggered
by a perturbation of the initially balanced zonal velocity field. As the wave breaks, gravity waves
are radiated with the intent of restoring the initial geostrophic balance [25]. The perturbation is
given by an unbalanced smooth profile centered at (x

c

,y
c

) = (2000,2500)km and defined as

�u(x,y,z) = u
p

exp
5
≠ (x≠x

c

)2 +(y ≠y
c

)2

L2

p

6
, (32)

where u
p

= 1ms≠1 is the perturbation amplitude and L
p

= 600 km is the width parameter.
We have seen above how the dynamic dissipation depends on a characteristic grid size. Due to

the very high aspect ratio of the current grids, with the vertical resolution being 100 times smaller
than the horizontal one, stabilization for this problem was first run by setting the vertical di�usion
to a value 100 times smaller along z than it is along x and y, and then simply to zero along z. The
result did not change significantly so that the plots shown in this paper are only those obtained with
zero vertical dissipation. The vertical resolution is su�ciently high to preserve stability without
the need for vertical di�usion.

To get a sense of the error that we commit and compare against [51], we first ran this test
without perturbing the initially balanced flow. The relative error norms L

1

, L
2

, and LŒ of q=fl◊
are defined as

L
1

(q(x, t)) =
s

�

h |q(x, t)≠ q(0,x)|d�h

s
�

h |q(0,x)|d�h

,
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Table 4: Error norms of fl◊ in the solution of the geostrophically balanced flow in a 3D channel for
5 di�erent horizontal resolutions, but the same 1 km vertical grid spacing. The errors are computed
at day 1 with respect to the initial condition. For comparison, the errors of the non-viscous solution
are also reported and are indicated by the ‚· symbol.

km L1 ‚
L1 L2 ‚

L2 LŒ „
LŒ

800 2.77◊10≠5 2.75◊10≠5 7.44◊10≠10 7.26◊10≠10 4.27◊10≠5 4.19◊10≠5

400 3.11◊10≠6 3.11◊10≠6 1.14◊10≠11 1.14◊10≠11 6.91◊10≠6 6.91◊10≠6

200 8.81◊10≠8 8.81◊10≠8 6.27◊10≠15 9.27◊10≠15 4.03◊10≠7 4.03◊10≠7

100 7.21◊10≠9 7.21◊10≠9 5.35◊10≠17 5.35◊10≠17 1.78◊10≠8 1.78◊10≠8

50 6.26◊10≠10 6.25◊10≠10 4.16◊10≠19 4.16◊10≠19 1.24◊10≠9 1.24◊10≠9

L
2

(q(x, t)) =

Ûs
�

h (q(x, t)≠ q(0,x))2 d�h

s
�

h q2(0,x)d�h

,

and
LŒ (q(x, t)) = max |q(x, t)≠ q(0,x)|

max |q(0,x)| ,

where q(0,x) is the initial solution and the integrals are computed via the usual quadrature formulas.
We report their values at day 1 in Table 4. The errors obtained with stabilization are compared
against our inviscid solution and against the inviscid solution of [51]. Because this problem is
smooth and the flow is stationary, the dissipative e�ect of the current method should be negligible.
Although some small dissipation is still partially active across the whole domain (plot of the SGS
is not shown for this case), its e�ect is indeed minor, as can be seen by the almost non-existent
di�erence between the tabulated errors of the stabilized and inviscid solutions. These errors are
plotted in Fig. 10 as well; the error decay shows that the order of the numerical approximation is
not degraded. In the same figure, the time evolution of the error is plotted for a 20 day simulation.

In the case of the perturbed flow that triggers a baroclinic wave, the evolution of T from day 12
to day 14 is shown in Fig. 11 given an anisotropic grid with �x = 100 km, �y = 75 km, �z = 1.25
km. (Note: to our knowledge, no result has been shown past day 12. We believe an instability in the
problem statement is responsible.) The plots show the solution on the xy cross section at z = 500
m. With respect to the results of [51], the wave breaking occurs at the same time (approximately
9 days). The values of T and of the vertical component of vorticity are in agreement with [51] at
all resolutions. The flow at t > 12 days is shown as well for future comparisons.

4.5 Mass loss

Next, we wish to analyze the e�ect of Dyn-SGS on the mass conservation since this is an important
metric for atmospheric models. Let us define the time dependent normalized mass loss as

M(t)
loss

=
s

�

[fl(t)≠fl(t
0

)]d�s
�

fl(t
0

)d� , (33)

where fl(t
0

) indicates density at the initial time. Figure 12 shows M(t)
loss

for a 20400 s simulation
of the 21

2

D rising thermal bubble at three di�erent resolutions and three stabilization methods: the
current one, a 2nd-order artificial di�usion, HV

2

with constant coe�cient, and a 4th-order hyper
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Figure 10: Normalized h-error norms for the solution of the geostrophically balanced flow in a 3D
channel. Left plot: grid convergence (log-log scale). Right: time evolution of ||fl◊||

2

.

di�usion, HV
4

, with constant coe�cient. All methods show a trend towards higher mass loss values
as the resolution is increased. For instance, the current case has the lowest value that approximates
machine precision in the case of 85 and 170 m resolutions but increases to higher values in the case
of the 45 m resolution. In the case of HV

2

and HV
4

, the mass loss is always in the proximity of
1 ◊ 10≠14, although the curves are visibly higher for higher resolutions. In spite of the di�erences
among the three methods, a sustained mass loss O(Æ 10≠14) is an acceptable value. At the coarsest
resolution of 170 m, HV

4

failed to preserve stability with the given coe�cient; this is why the
time series is truncated at approximately 16000 seconds. Although a di�erent coe�cient would
immediately solve this problem, the search for a better coe�cient falls beyond the scope of this
paper.

In Fig. 13, we plot the mass loss for a 20 day simulation of the geostrophically balanced flow
in a 3D channel. The very large time scale of this problem is a good test for mass conservation
in a geophysical flow. Although not at machine accuracy and in spite of a light tendency towards
mass increase that begins at approximately day 6, O(1 ◊ 10≠15) mass loss is still indicating that
the method is, in this respect, robust for very long simulations. A significant mass loss increase or
oscillation would be indicative of an improper behavior of the model.

5 Model verification: quasi-linear scalar equations

We test the model against the solution of the quasi-linear 1D Burgers equation. The reason for
including this test is twofold: first, we demonstrate that Dyn-SGS can also be used to stabilize
scalar equations, which are typically required as part of atmospheric modeling systems; second, this
problem admits an exact solution to compare against. The solution of linear transport problems
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Figure 11: Baroclinic instability in a channel. f -plane solution at z = 500m. The temperature is
plotted at days 12, 13, 14 on a grid resolution �x = 100 km, �y = 75 km, �z = 1.25 km using
4th-order polynomials. The thick contour corresponds to T = 290 K.
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Figure 12: Time evolution of the mass loss for the stabilized solution using the current method,
using HV

2

with constant coe�cient ‹ = 25m2 s≠1, and using HV
4

with ‹ = 1E + 5m4 s≠1 in the
simulation of the 21

2

D rising thermal bubble. All methods show a trend towards higher mass loss
values as the resolution is increased. For instance, the current case has the lowest value that
approximates machine precision in the case of 85 and 170 meter resolutions, but increases to higher
values at 45 m resolution. In the case of HV

2

and HV
4

, the mass loss is always in the proximity
of 1◊10≠14, although the curves are visibly higher at higher resolution. At the coarsest resolution
of 170 m, HV

4

failed to preserve stability with the given coe�cient; this is why the time series
is truncated at approximately 16000 seconds. A di�erent coe�cient would immediately solve this
problem, although its search is not relevant in the context of this paper.
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via Dyn-SGS is described in a recent report [39].
The solution is computed in �(x) = [0, 2] for the initial condition u(x,0) = 0.5 + sin(fix) and

periodic boundary conditions. The solution is advanced in time until t = 2/fi. The solution is
computed on a 40 and on an 80 element grid of order 8, which correspond to the e�ective resolutions
�x = 6.25 ◊ 10≠3 m and �x = 3.125 ◊ 10≠3 m, respectively. The exact solution of the inviscid
Burgers equation is computed via the method of characteristics. The characteristic curves of the
computed solution are plotted in Fig. 14. As time approaches 1/fi s, the characteristic curves begin
to cross, generating a shock that becomes stronger as time passes. At all times, the solution remains
smooth su�ciently far from the shock, as visible from the point-wise relative error, |u ≠ u

exact

|,
plotted in Fig. 15 on the x ≠ t plane. The superposition of the computed and exact solutions at
the two time levels t = [3/(2fi), 2/fi] is plotted in Figs. 16 and, respectively, 17. The shock is well
captured within one element. In spite of the high-order approximation (8th-order elements), the
over- and under-shoots in the proximity of the shock are limited, very well controlled, and do not
propagate from the shock across the domain. This is confirmed by the point-wise error curves plotted
in Fig. 18. Our results agree with the entropy-viscosity solution of [22]. Moreover, the sharpness of
the discontinuous solution seems uncompromised by the action of the dynamic di�usion. This is a
strong result that demonstrates well the shock-capturing capabilities of Dyn-SGS when high-order
methods are used.

Figure 19 shows the element-wise structure of µ, Eq. (15), at t = [1/fi, 3/(2fi), 2/fi] s. µ has
no e�ect on the solution in the smooth regions, as it clearly acts only in the neighborhood of the
shock.

The normalized L
1

,L
2

, and LŒ error norms are plotted in Fig. 20 as a function of time. As
expected, the formation of the shock has a major e�ect on the accuracy of the solution, as is visible
from the jump in the infinity norm.

6 Conclusions

We presented the application of a dynamic sub-grid scale model (Dyn-SGS) for Large Eddy Sim-
ulation to stabilize the spectral element (SEM) solution of low Mach number stratified flows and
of quasi-linear scalar transport. Possibly, the most important features of Dyn-SGS that emerged
from this study are the following:

• For smooth problems, this model does not deteriorate the nominal order of accuracy of the
spectral approximation of the governing equations (see the error norms computed for the
geostrophically balanced flow in a 3D channel.)

• It is flexible and robust with respect to the flow regime and grid size.

• It is completely free of a user-tunable parameter.

• In the neighborhood of sharp gradients, it limits and controls the magnitude of the over- and
under-shoots without compromising the solution away from the discontinuity. Moreover, the
sharpness of the discontinuity is very well preserved.

It was also shown that dynamic stabilization and large eddy simulations are achieved by one scheme
alone.

When it comes to parallel performance, the cost of this method is that of a second-order Laplace
operator, whose computation only requires one communication, against the two (or more) necessary
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Figure 14: 1D Burgers equation: Characteristic curves of the computed solution. Left: �x =
6.25◊10≠3 m. Right: �x = 3.125◊10≠3 m.

Figure 15: 1D Burgers equation. Point-wise relative error in logarithmic scale on the x≠ t plane.
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Figure 16: 1D Burgers equation at t = 3/(2fi). Global solution and details of the discontinuity
(smaller subplots). Solution computed on an 80 element grid of order 8. The shock is well-resolved
within one high-order element. The over- and under-shoots are limited, well controlled, and do not
propagate from the shock across �. The sharpness of the discontinuity is well preserved.
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Figure 17: Like Fig. 16, but at the final time t = 2/fi s.
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Figure 20: 1D Burgers equation. Normalized L
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, L
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, and LŒ error norms as a function of time.
Left: �x = 6.25◊10≠3 m. Right: �x = 3.125◊10≠3 m. As expected, a large jump in the error for
the infinity norm occurs as soon as the shock forms.



when using a fourth (or higher) order hyper-di�usion. On the way towards exascale computing,
fewer communications have a direct impact on the simulation speed; this factor is of fundamental
importance for the design of next generation atmospheric models.

We have seen how Dyn-SGS is based on element-wise coe�cients. Based on the observations of
[34; 3; 17], the current method (and hence the solution) would benefit if the discontinuous, element-
wise viscosity could be smoothed via some proper mechanism. Taking advantage of the continuity
of the solution across spectral elements, a point-wise definition of the di�usion coe�cient should be
su�cient. This issue will be explored in the future, together with a more thorough analysis of how
Dyn-SGS performs on passive tracers and how it can be used as a turbulence model.

We have anticipated that the current dissipation is independent of the numerical method. It
could be implemented in a discontinuous Galerkin, finite volume, or other environments alike. As
shown in the Appendix, we have been working on its application using discontinuous Galerkin and
will report more of our findings in a future paper.
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A Stabilized discontinuous Galerkin

Dyn-SGS is independent of the numerical method. Its construction is only tied to the governing
equations. To show this, we applied it to the discontinuous Galerkin solution of the rising thermal
bubble problem described in [20] and solved therein using CG and DG. These results are reported
in this Appendix because the application of Dyn-SGS to the discontinuous Galerkin method falls
beyond the scope of this paper; nevertheless, it is meaningful to show how the viscosity described
in this paper can be utilized outside the realm of finite and spectral elements. A full analysis of the
performance and applicability of Dyn-SGS to DG will be specifically analyzed in a future work.

For DG, the flux form of the governing equations must be adopted, so that we re-write equations
(3) in conservation form as:

ˆfl

ˆt
+ flÂu

j

ˆx
j

= 0, (34a)

ˆflÂu
i

ˆt
+ flÂu

i

Âu
j

ˆx
j

+ ˆp

ˆx
i

= ≠ˆ·SGS

ij

ˆx
j

≠flg”
i

, (34b)

ˆflÂ◊
ˆt

+ flÂ◊Âu
j

ˆx
j

= ≠ˆQSGS

j

ˆx
j

, (34c)
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Figure 21: Rising thermal bubble in � = [1000]2 m2. DG solution at �◊ at t = 700 for the two
resolutions �x = �z = 12.5 m (20◊20 elements of order 4) and �x = �z = 6.25 m (40◊40 elements
of order 4).

where ·SGS

ij

and QSGS

j

are, again, modeled as (4) and (6). The details on the DG approximation
of (34) can be found in [33]. Here we simply state that the second-order viscous operators are
discretized via the Local Discontinuous Galerkin (LDG) approach [11]. To build Dyn-SGS for DG,
the equation residuals must account for the numerical flux that results from the DG approximation.
This is necessary to remove the inherent dissipation of DG from the SGS model.

The solution is plotted in Fig. 21 for two grid resolutions: �x = �z = 12.5 m, left, and �x =
�z = 6.25, right, in the domain � = [1000]2 m2. In [20] the stability of the solution was achieved
via a non-dissipative low pass spatial filter [52; 6]. For direct comparison, a viscous solution of the
same problem is reported in [53] using a parameter-dependent element-based viscosity.

We are fully aware of the many other stabilization methods designed for discontinuous Galerkin
(DG) (see, e.g., [44; 34]); however, the fact that Dyn-SGS is based on the physical Navier-Stokes
stress operators and seems feasible for large eddy simulations, merits consideration for proposing
another stabilizing scheme for DG.
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